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Canonical orthonormal basis for SU(3) 3 SO(3). 
I: Construction of the basis 

R Le Blanc and D J Rowe 
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7 

Received 2 October 1984, in final form 27 February 1985 

Abstract. A canonical orthonormal basis is given for generic representations of the group 
chain SU(3) 3 SO(3).  

1. Introduction 

In a recent series of papers, Deenen and Quesne (1983) and Quesne (1984a, b) 
succeeded in constructing a generally non-orthonormal basis for the group chain 
U( n) 3 O( n) for which the internal labelling problem is resolved by sound group 
theoretical techniques. 

Consider, for example, the case n = 3. The idea is to classify states in the funda- 
mental unirreps of Sp(6,%) by their transformation properties under S p ( 2 , 8 )  xO(3) 
and its subgroups. Due to the complementarity of Sp(2,%) and O(3) on this space 
(Chac6n 1969, Moshinsky and Quesne 1970, 1971), states that belong to a unirrep 
($(LE)) of Sp(2,%) simultaneously belong to a unirrep [LE] of O(3) (the notation will 
be explained below). Likewise, states that belong to a unirrep { $ ( h , h 2 ) }  of U ( 2 ) c  
Sp(2, '8) simultaneously belong to a unirrep {hlh20} of U(3). Thus the Sp(2,'8) and 
O(3) groups share their labels and the U(2) and U(3) groups share theirs. We then 
obtain a complete classification of states by 

SP(2,%) = U(2) = U(1) 
($(LE)) {$ (hh2)1  CL 

O ( 2 ) c  O(3) = U(3) 

The vital property of this classification, observed by Deenen and Quesne, is that the 
extra labels for the U(3)J0(3)  reduction can be identified with the missing labels for 
the Sp(2,8)JU(2)  reduction. 

More generally, in order to construct a U( n )  = O( n )  basis for the d-rowed rep- 
resentations of U(n),  one similarly has to classify states in the fundamental unirreps 
of Sp(nd, 8) by their transformation properties under Sp( d, 8) x O( n) and its sub- 
groups, thereby identifying the U(  n)JO( n )  reduction with the Sp(d, 8 ) J U ( d )  reduction. 
A thorough study of the branching rules relevant to these reductions has recently been 
given by Rowe e? al (1985b). 

In this paper, we take the analysis of Deenen and Quesne one step further to obtain 
canonical orthonormal bases for SU(3) 2 SO(3). Although our premises are very similar 
to those of Deenen and Quesne (1983) and Quesne (1984a, b), our construction will 
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be seen to be different. The group theoretical prescription for the construction is 
unambiguous and readily extendable to the more general case of constructing orthonor- 
mal bases for d-rowed representations of SU(n) 2 SO(n).  Using recent advances in 
the representation theory of the discrete series of the non-compact symplectic groups 
Sp(d, 8) (Rowe 1984, Rowe et a1 1985a, b), we will make use of the fact that orthonor- 
mal bases for Sp(d, 8) 2 U(d) can be explicitly constructed in terms of the reduction 
of the outer product of U( d )  unirreps which have been analysed in depth by Biedenharn 
and Louck and their collaborators (1972 and references therein). Thus, given a 
canonical reduction of the U(d) outer products (which, in view of results given in part 
I11 of this series, appears feasible), we obtain a canonical U(n) 2 O(n) basis for the 
d-rowed U(n) representations. For d = 2, there is no outer multiplicity and we obtain 
immediately a canonical SU(3) 2 SO(3) basis. 

Lest it appears laboured to use an Sp(d, 8) 2 U( d )  reduction to solve a U( n )  2 O( n )  
problem, it should be made clear that it is, in fact, simply an explicit implementation 
of the structure underlying Littlewood’s theorem (cf equation (2.1)) which gives the 
U(n) z O ( n )  branching rules for d-rowed representations of U(n) in terms of outer 
(Kronecker) products of U( d )  unirreps. 

2. The state labelling problem for U(n) =I O(n) and Sp(d, 8) 2 U(d) 

Consider a unirrep of U(n) with character { h }  where 

h = ( h , h ,  . . .  h d )  

is a standard partition of integers having d < n. 
An O(n) character is denoted by [ A ]  where A is a partition of integers having not 

more than v parts for n = 2 v  or 2 v +  1. The reduction of a U(n) unirrep under the 
restriction U( n)JO( n )  is given by Littlewood’s branching theorem which states that if 
the Kronecker product of two U(n) unirreps {A} and { p }  contains the unirrep { h }  a 
number of times denoted by g{A){r]{h), then, under the restriction U( n) lO( n), 

where D is the set of partitions (Black et a1 1983) of even integer parts. 
Note, however, that if 2d > n, non-standard O(n)  labels occur in this reduction 

which may be converted to standard labels using Newell’s (1951) or King’s (1975) 
modification rules. For example, if n = 2v+ 1, d = v +  1, v 2  1, one encounters non- 
standard O(n)  labels of the type [ A l l  where A is a partition of v integer parts. The 
modification rules give [A 11 =[A]* where 

and the branching rule becomes 

where now A, for the first term, is restricted to partitions of no more than v parts and, 
for the second term, to strictly v parts. For n = 3 and d = 2, this is the only modification 
needed. However, for the general case, other modifications will be required. 
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For d < n, the U(n) unirrep { h }  restricts to a unirrep { h }  of SU(n).  Also, for 
n = 2v+ 1, the distinct O(n) unirreps [ A ]  and [A]* remain irreducible on restriction to 
SO(n) but, since E ( g )  = 1 for SO(n),  they become equivalent. 

For example, the multiplicity of an SO(3) unirrep [ L ]  contained in an SU(3) unirrep 
{ h,  h2}  is equal to 

The construction of a basis of states l { h } a [ A ] t ) ,  where a is a multiplicity index for 
the U(n)JO(n) reduction and 5 indexes a basis for the O(n) irrep [A], is greatly 
facilitated by the use of the Chac6n-Moshinsky-Quesne complementarity theorem. 
The theorem states that, in a Bargmann space of n x d complex variables or equivalently, 
in the space of the simple nd-dimensional harmonic oscillator, states that belong to a 
unirrep ((n/2)(A)) of Sp(d, 8) also belong to a unirrep [ A ]  of O ( n ) ,  where we define 

(n/2)(A)=(AI+n/2,  A , + n / 2 , .  . . , Ad+n/2). (2.5) 

Likewise, states that belong to a unirrep {(n/2)(h)} of U(d)  also belong to a unirrep 

Note that the same non-standard O(n) labels [ A ]  arise in the complementarity 
relationship as occur in Littlewood's branching theorem, e.g. for d = 2 and n = 3, 
appropriate for the SU(3)JSO(3) reduction, the Sp(2, %) unirrep ($(LO)) is com- 
plementary to the O(3) unirrep [ L ]  and the (z(L1)) unirrep for L> 0 is complementary 
to [ Ll]  = [ L]* (Rowe et a1 1985b). 

As a consequence of the complementarity theorem, U( d )  x O( n) highest weight 
states for the chain 

{ h }  of U( n). 

can be identified with 

basis states. The state labelling probiem for the chain U( n )  = O( n )  is thus identified 
with the Sp(d, %) 2 U ( d )  labelling problem. 

The algebras of relevance for the construction of an SU(3) = SO(3) basis are then 
the sp(2,B) and the u(3) algebras realiszd here in terms of the same six complex 
(Bargmann) variables ( g a i  ; a = 1,2,  i = 1,3). The sp(2,%) algebra is spanned by the 
10 operators 
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(with summation over repeated indices) while the u(3) algebra is spanned by 

with its so(3) subalgebra given by 

L, = - iE,JkCJk. 

(2.9) 

(2.10) 

3. Orthonormal basis for Sp(2, '8) 3 U(2) 

Recently, Rowe (1984) has developed a coherent state theory for the non-compact 
symplectic group Sp(d, M). His work makes use of an implicitly defined canonical 
orthonormal basis for a given unirrep of this group. It was also shown how to calculate 
reduced matrix elements of the symplectic algebra in this basis. Since we are interested 
in the explicit construction of an orthonormal Sp(2, M) basis, it is useful to recall his 
results in a format applicable to the present case. 

A unirrep of the algebra Sp(2, M) is identified by the quantum labels of its highest 
weight state, i.e. a state l((n/2)(AlA2))hw) such that 

a a p I ( ( n / 2 ) ( ~ , ~ 2 ) ) h w )  = 0 

' Q p  I(( / 2 ) (  A l A Z ) ) h W )  = f f < P  (3.1) 

'QQl ( (n /2 ) (AlA2) )hw)  = ( ( n / 2 ) + A Q ) j ( ( n / 2 ) ( A , A , ) ) h w ) '  
Others states of the unirrep are generated by the multiple action of the lowering 
operators d on the highest weight state. Note that we consider here the generic case. 
Restriction to 

( ( n / 2 ) ( A d 2 ) )  = & L E ) )  

E = 0 or 1, L a  E, will be made in subsequent sections. 
The lowering operators d,, are the components of a U(2) (20) tensor. A product 

of k such tensors can be coupled to an irreducible U(2) tensor Zisl of rank ( 6 )  = {6,6,} 
where 6,  2 6, are even integers and 6, + 6, = 2k: 

z'y d) = [ d x d x . . . x d ] { 6 )  
k products 

(3.2) 

Since the {20} tensor d is uniquely defined up to an amplitude factor, it follows that 
Z'"(d) is also unique up to a k-dependent amplitude and an unimportant phase. 

The tensor Z{')  can also be labelled by 

k =$(SI  + 6,) 

I = $(SI - 6,) 
(3.3) 

where I is the familiar SU(2) angular momentum. Thus the components of Z") can 
be indexed by the z component of I given by m = - I , .  . . + I .  

A non-orthonormal Sp(2, % ) = U ( 2 )  basis is now given by the coupled states 
l ~ ( ( ( n / 2 ) ( A ) ) { 6 } { ~ } M ) )  = [ - W 4 ( ( n / 2 ) 0  )>>It? 

= (IAmm'lJM)Z',"'(d)l(( n/2)(A))m') 
m m '  

(3.4) 
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compact and non-compact groups (Hecht and Elliott 1985, Le Blanc and Rowe 1985~).  
In particular, it has been demonstrated (Rowe et a1 1985b) that they very conveniently 
effect the suppression of states allowed by the U(d)  coupling but forbidden by the 
Sp(d, %)&U(d)  branching rules. These relevant facts have their origin in the correspon- 
dence noted by Mackay (1978) between unirreps of Sp(d, %) on the one hand, and 
all unirreps of V O U ( d )  on the other, where V is the tangent space defined at each 
point of the manifold Sp(d, %) /U(d) .  The unitary-Weyl algebra (cf appendix) is seen 
to be an explicit realisation of the tangent bundle V O U ( d )  and the embedding of the 
sp(d,%) algebra in the enveloping algebra of the unitary-Weyl group requires the 
introduction of the K 2  matrices. This embedding has been shown to encompass all 
the discrete series representations of the symplectic algebra (Rowe et a1 1985a, b).  We 
are therefore justified in calling the basis states (3.8) canonical. 

The polynomials 2'6) can be either constructed recursively using equation (A17) 
or can be found in Quesne (1981). They are given by 

zf$8qd) = N ( x ,  y ) d : 1 ( 2 d + 1 d - 1  - d ; ) Y  (3.10) 

where 

1 ((2x+l)!(x+y)!) l /2  
N ( x 9  y ,  =E y!(2x+2y+ l ) !  

with 

x = ( a1 .- 6 , ) / 2  

and 

4. Orthonormal basis for SU(3) 1 SO(3) 

Introducing the spherical variables 

one can easily ascertain that the Sp(2, %) highest weight states for the (3 (L) )  and 
(+( Ll))  unirreps are given respectively by 

and 

(4.3) 
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where 9 h ( g a )  is a solid harmonic defined by 

One sees immediately that these states are also O(3) highest weight states belonging 
to unirreps [L] and [L]*, respectively. 

By means of equations (2.6) and (2.7), we can therefore identify these Sp(2, %) x 
O(3) highest weight states with [U(3) 2 0(3)]  x U(2) highest weight states. Hence we 
have 

(gl{LO)[LlM) = % 4 ( g , )  (4.4) 

(4.5) 
1 

(gI{LJ[LlM) = (L+ 1) , , 2 [ 9 L - 1 ( g , )  x %Yg, xg2)lLM. 

According to equations (2.6) and (2.7), the general U(3) 2 O(3) polynomials 

The construction of these Sp(2 ,g)  2 U(2) states was given in the previous section. 
In realising them as Bargmann polynomials, one has only to couple the Sp(2,Yt) 
highest weight polynomials (4.2)-(4.3) with the appropriate combination of lowering 
operators. The spherical m = $1 component of the Sp(2, %) lowering operator drB(” 
is given the normalisation 

5. Examples 

5.1. (gl{hi, OHLIW. 
These polynomials are well known (Kramer et a1 1981) and given by 

Hence 
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We now show how such a state is obtained with the methods of the preceding 
sections. Coupling the symplectic Sp(2, W) highest weight state given by 

to the polynomial Z{" in .d given by equation (3.10) we find, according to § 3, 

(5 .3 )  

Consider first the case L = 0 and h ,  even. We find directly from equation (A16) 

K 2 ( 0 ,  n + 2 ) = ( n + 3 ) K 2 ( 0 ,  n ) .  (5.4) 

Hence we obtain 

in agreement with equation (5.2). 
For arbitrary L, the K 2  matrices are given once more by equation (A16) 

K * (  L, n + L + 2) = (n + 2 ~ +  3 ) ~ ' (  L, n + L )  ( 5 . 5 )  

and we find 

again consistent with equation (5.2). 

5.2. (g1{4,2){6)[212). 

The SU(3) unirrep {4,2} is the simplest example of an  irrep with an  SO(3) multiplicity. 
The branching rule is given by 

(5.6) 
i.e. there are two L = 2 SO(3) unirreps contained in this SU(3) unirrep. Following § 3 
they will be distinguished by the labels 

S U ( 3 ) & W ) :  {4,2)&[01+ 2[21+ Dl + E41 

{ h 6 2 )  = {4,0) and  (2321. 



Construction of the basis 1899 

State U(2 )  labels Boson labels Overlaps 
index { U }  IS)  K 2 ( W )  

Since they will be constructed from the Sp(2,%) unirrep (5(2,0)), we first index the 
S p ( 2 , 3 )  basis up to the desired level as shown in table 1. 

The needed states are 

17) = 1 { 4 , 2 ~ 4 , 0 ~ 2 1 2 )  = 1(;(2, 0 ) ) { 4 , 0 ~ ; ( 4 , 2 ) ~ ~  
and 

18) = I{4, 21{2,2)[212) - K(2,0)){2,2){;(4,2))hw). 
We find 

have the overlaps as given in table 1. 
The orthonormal basis states for the L = 2 subspace will then be given by 
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6. Discussion 

In the introduction, we stated that the basis constructed above could be considered 
as a canonical basis for the SU(3) 2 SO(3) group chain. As can be seen from the 
algorithm for the construction of the basis and from the arguments given in 9 3, this 
follows from a parallel claim that the basis constructed by Rowe (1984) for the Sp(d, 8) 
discrete series is likewise canonical when the reduction of the outer products of U(d )  
representations occurring in equation (A8) is executed in a canonical way (for example, 
using Biedenharn’s operator patterns to solve the multiplicity problem). Thus, whereas 
the reduction of the outer product of U(d)  representations is used in Littlewood’s 
theorem to give the U( n)&O( n )  branching rules for d-rowed representations, we have 
shown that an explicit canonical reduction of the U(d) outer products defines a 
canonical U( n )  13 O( n )  basis for d-rowed representations. 

In the subsequent articles of this series, it will be shown (Le Blanc and Rowe 
1985a) that matrix elements of the SU(3) algebra can easily be calculated in the above 
SU(3) 2 SO(3) basis. We shall also give an explicit construction (Le Blanc and Rowe 
1985b) of a basis of SU(3) tensor operators in our six-dimensional Bargmann space 
and will classify them using (modified) Biedenharn and Louck’s operator patterns. 
This set of tensor operators can be used to define and calculate SU(3) Wigner and 
Racah coefficients in both Gel’fand and SU(3) 3 SO(3) subgroup chains. Their mode 
of construction will clearly indicate that the Biedenham and Louck’s resolution of the 
outer product of U(d)  representations in terms of (modified) operator patterns should 
lend itself to easy implementation in Bargmann spaces. 

Appendix 

Al. Embedding of sp(d, 8) in the enveloping algebra of the unitary- Weyl algebra u ( d ) O  
W(d(d + I ) / 2 )  

From the coherent state theory of the symplectic group (Rowe 1984), one obtains a 
non-unitary realisation (with respect to the U(d)  boson measure) of the sp(d, M) 
algebra in the form 

W,) = [A, 4 1  

VC,) = +(a ta ) ,  

r ( B I J )  = 

where the a’, are d ( d  + 1)/2 symmetrical Weyl (boson) operators 

t t  a, = 

satisfying 

a:kl = SI/SJk + 81k8Jl 
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and the Ceij are a basis for a U(d)  algebra 

[ v i j ,  v l k l  = v i k a j l  - y l ja ik  

that commutes with the boson algebra, i.e. 

[ gip a : k l  = [ Cey, a l k l  = 0. (A4) 

A is a U(d)  invariant operator given by 

A = 4 Trf( %? + a ‘ a ) (  (e + at a ) ]  - 4 Tr( a ‘aa ‘ a )  -a (  d + 1 )  Tr( at a )  (AS) 

where, for example, 

Tr(ata) = E  a’,a,!. 
I ]  

Let Vz(A) be the carrier space for a U(d)  2 U(1) xSU(d)  unirrep {(.(A)} (where 
u = hd, A ,  = h, - hd, i = 1 , .  . . , d - 1)  and let Vw be the camer space for a representation 
of the Weyl (boson) algebra. The product space 

vg(A) uw = VZ‘”)@ vw (A6) 

then carries a unirrep of the direct product unitary-Weyl algebra. Also, if I{cr(A)}hw) 
is the U(d)  highest weight state and 10) is the boson vacuum, then 

I(a(A))hw) = l{d~))hw)@IO) (A7) 
is the highest weight state for the unitary-Weyl albegra. The boson operator at is a 
U(d) (2) tensor WRT the realisation r of U(d)  c Sp(d, 3)  defined by (Al) .  Let Z‘”(a’)  
be a normalised polynomial in the boson operators of tensor rank (6) where 6 is a 
partition with even parts. Then an orthonormal basis for Vzp’ is given by states of 
the form 

k u ( A  ) } { 6 ) a { w h )  = [z‘”(at)b(A ))I”,’”’ (A81 
where CY is a multiplicity index and 7 labels a basis for the coupled U(d)  unirrep {U}. 

The U( d)-invariant operator A is conveniently diagonal in this basis with eigen- 
values 

d 

R(a(A)Sw) = 1 [2w5 - 6f + 2( d + l)(w, - 8,) - 2i(2wI - &)I. (A9) 

Observing that the highest weight state I{u(A))hw) is also a highest weight state 
for the realisation r of the Sp(d, 3)  algebra, it follows that Sp(d, 3)  acts irreducibly 
on the subspace V;;”)c Vu(”)  uw generated from the highest weight state ){a(A)}hw) by 
the T(A) lowering operators. A basis for V;;”) is obtained by eliminating from the 
Vz?) basis (A8) all states for which 

, = I  

[ Z ‘ ” ( r ( A ) ) l { a ( A ) ) ) ] ~ ‘ ~ )  = 0 (A10) 
(Rowe et al 198Sb). 

A2. Sp(  d, 8) reduced matrix elements 

The realisation (Al)  of the symplectic algebra can be made unitary with respect to the 
U(d)  boson measure by making the transformation (Rowe 1984) 

y ( X )  = K - ’ r ( X ) K  x E SP(4  8) ( A l l )  
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with K = K t  Hermitian and U(d)  invariant such that the action of y is unitary. The 
equation y(  B)t  = y ( A ) ,  required for unitarity, then implies that K satisfies 

K 2 a ” K 2  = [A, at ] .  (A12) 

K 2 a 6 a ,  =[A, a b ] K 2 a ,  (A131 

Hence 

from which one derives a recursion relation for the matrix elements of K 2  

K i ( c + ( A ) ;  w )  = ( i w l K ‘ l j w )  

= (2/ N ( j ) )  AR(iw, h’)( kw’l K ’Ilw‘)(iw (latll kw’) ( jw [ (a t  11 h‘)* 
klw’ 

(A141 

where 

AR( iw, kw’) = R( i w )  - R( kw’) 

and where the letters i, j ,  k and 1 stand for a given (Sa) multiplet, 

N ( j )  = ( j w l a h l j w )  =C n k ( j )  
k 

and ( iwI lat l Ikw) are reduced matrix elements of the unitary-Weyl algebra. It is easy 
to deduce that these are given by the product of a U( d )  recoupling (Racah) coefficient 
times a function of ( 6 ) .  Explicit expressions for Sp(2, %) are given below. The Sp(d, %) 
reduced matrix elements are then given by 

Note that for multiplicity-free states, i.e. states l a ( A ) S a w )  for which 6 and a take only 
single values for the given a(A) and w,  a recursion relation for the diagonal matrix 
elements of K 2 ( w )  is given directly from equation (A12). For multiplicity-free states 
we have 

[ K 2 ( w ’ ) / K ’ ( w ) ] (  iw‘ l lat l l jw)  = AR( iw’, j w ) (  iw’l la’ l l jw).  (A161 

Specialising to Sp(2, %), we easily find, following Rosensteel and Rowe (1983), 

( ( c + ( ~ ) ) { ~ ’ } { ~ ’ } l l a + l l ( c + ( ~  )){SHwI) 

where U( ) is a standard SU(2) Racah coefficient and, from Quesne (1981), 

A3. The overlap matrix 

We wish to show that the square of the transformation K of § A2 is in fact the overlap 
matrix (3.9). 
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Let us denote by 

with rounded brackets, denote their images in the unitary-Weyl representation space. 
Since the isomorphism 

A - y ( A )  

is unitary, it follows that the overlap matrices for the two sets of states are identical, i.e. 

(* lul*I '" ,)  = (* l ' " l*,uo (A201 
where we simplify notation by putting i = (a (A)Sa) .  

KI(fl(A))v) = ( ( d h ) ) ~ ) )  

Since y ( A )  = K a t K - '  and since for the highest weight U ( d )  states 

it follows that 

I W d A  ) ) { 6 > d w ) 7 7 ) )  = K I(+ ) ) { S b { w > v )  

I ( 4 A  ) ){a la{wlT)  = [z'"'(a+)l(u(A 

where 

is a member of an orthonormal basis. 
It follows from (A20) and (A21) that 

(Y Iw = ( iw 1 K K 1 j w  ') = ( iw 1 K '1 j w  ') ('422) 
where K is the Hermitian square root of the positive definite matrix K t K .  It also 
follows, since 

( * , w l * , u , )  = ~ w w , ( * t w l ~ , u )  
that K can be chosen diagonal in w. Finally, an orthonormal basis of Sp( d, 8) states 
is given by (Rowe 1969) 

l i w ) = c  K , ' ( d A ) ;  w)I*,J 
I 

where K ( u ( A ) ;  w )  is the matrix with elements 

K , ( a ( A ) ;  w ) =  ( i w l K l j o ) .  
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